

CALCULATION POLICY

Calculation policy: Guidance

See White Rose planning documents for WAGBA's and a more detailed breakdown of calculation progression.

	Addition Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as' and exchanging.				
	Progression	Concrete	Pictorial	Abstract	
	<u>1.1 Combining two parts to</u> <u>make a whole.</u>			4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.	
/Year 1	<u>1.2 Starting at the bigger</u> <u>number and counting on</u>	Counting on using number lines, cubes or Numicon.	Abarmodel which encourages the children to count on, rather than count all.	The abstract number line: 4+2 = 6	
EYFS /)	<u>1.3 Addition bridging</u> <u>10.</u> Using ten frames or Numicon.	8 + 7 8 + 7 8 + 7 = 15 2 5	counters/cubes.	Children to develop an understanding of equality e.g. $8+\Box = 15$ $8+7=7+\Box$ $8+7=\Box +4$	

	2.1 Adding three single digits.	Using Numicon or ten frames. 7+3+4	Using pictures of ten frames or number line. 7 + 3 + 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 15 16 17 18 19 20	Use number bonds to make ten. 6 + 7 + 4 = 6 + 4 + 7 = 17
Year 2	2.2 Use dienes to add two <u>numbers.</u> (2 digit + 1 digit and 2 digit + 2 digit)	Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the dienes e.g. lines for tens and dot/crosses for ones.	41 + 8 Add the ones: 1 + 8 = 9 Add the tens: 40 + 9 = 49
	2.3 Addition with exchanging using dienes (2 digit + 1 digit and 2 digit + 2 digit)	36+25 (exchanging the ones)	36 + 25 $10s$ $1s$ 11 11 6 1	Introduce formal column method: <u>+25</u> 61 1
Year 3	<u>3.1 Column method- exchanging (up to 3 digits).</u> Using dienes.	153 + 371 = 524 Hundreds Tens Ones	153 + 371 = 524	Introduce formal column method: 153 <u>+ 371</u> <u>524</u> 1
	3.2 Column method - exchanging (up to 3 digits). Using place value counters.	243 + 368 = 611 $100s 10s 1s$ $000 000 000$ $6 1 1$	243 + 368 = 611	243 <u>+368</u> <u>611</u> ¹ 1

	4.1 Column method- exchanging	2162 + 1253	2162 + 1253	21/2
Year 4	(up to 4 digits). Using place value counters.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2162 <u>+ 1253</u> <u>3515</u> 1
۲ 5	5.1 Column method exchanging with more_ than 4 digits	See Year 4 if required.	See Year 4 if required.	1720cm 750cm <u>+ 1500cm</u> <u>3970cm</u> 1
Υεαι	5.2 Column method – decimals (up to 2 d.p.). Use place value counters.	1.36 + 2.37	1.36 + 2.37	
Year 6	<u>6. 1 Column method-</u> <u>exchanging with more</u> <u>than 4 digits</u>	See Year 4 if required.	See Year 4 if required.	1720cm 750cm <u>+ 1500cm</u> <u>3970cm</u> 1
X	<u>6.2 Column method – decimals</u> <u>(up to 2 d.p.).</u> Use place value counters.	See Year 5 if required.	See Year 5 if required.	$ \begin{array}{r} £1.36 \\ + \underline{£2.37} \\ \underline{£3.73} \\ 1 \end{array} $

	1.7 Make 10 using the ten	Making 10 using a ten frame. 14 - 5	Children to present the ten frame pictorially	Children to show how they can make ten
	frame		and discuss what they did to make ten.	by partitioning the smaller number.
				$ \begin{array}{c} 14 - 5 = 9 \\ 4 & 1 \\ 14 - 4 = 10 \\ 10 - 1 = 9 \end{array} $
	<u>2.4 Counting back using a</u> <u>number line.</u>	2 3 4 5 6 7 8 9 6 11 12 13 14 15 16 17 18 1	-2 -2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	15 – 7 = 8
Year 2		Column method using dienes. 48 - 7 10s 1s 10s 1s 4 1	Children to represent dienes pictorially.	48 – 7 = 41
	2.6 Subtraction with exchanging using dienes (2 digit – 1 digit and 2 digit – 2 digit)	Column method using dienes. 41-26 $10s 1s 1s$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Introduce formal column method: 3 A ¹ 1 <u>- 26</u> 15
Year 3		Column method using place value counters. 234 - 88 100s 10s 1s 100s 10s 1s 100s 10s 1s 1 4 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formal column method. 2 ² 3 ¹ 4 <u>- 88</u> <u>6</u>

	3.4 Finding the difference	Begin to find the difference by	74 - 47 = 27	
		counting on or back.		74 - 47 = 27
		The difference between II and I4 is 3.	-3 -4 -20	/4-4/ = 2/
		0 1 2 3 4 5 6 7 8 9 16 11 12 13 14		
		6 1 2 3 4 5 6 7 8 9 10 11 12 13 14		
	4.2 Column method with regrouping (including	5342 – 1735	5342 – 1735	5342 – 1735
Year 4	regrouping thousands, regrouping thousands, hundreds, tens and ones). Up to 4 digits using place value counters.		10003 0003 0005 000 0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000	$\begin{array}{r} 4 & 3 \\ 5 & 13 \\ -1 & 7 \\ 3 \\ 5 \\ 3 \\ 6 \\ 0 \\ 7 \\ \end{array}$
	5.3 Abstract column	See Year 4 if required.	See Year 4 if required.	5342 – 1735
	method with regrouping			4 2
	(including numbers with more than 4 digits).			513 /12
Year 5				-1735 3607
D C C		3.24 – 1.16	3.24 – 1.16	
۶	<u>decimals up to 2</u> <u>decimal places with</u> <u>place value counters.</u>	ones terths is hundretts ito	ones tenths to hundreths Too OOO O @ @@@ @@@@ @@@@@ @@@@@ @@@@@ @@@@@	
		See Year 4 if required.	See Year 4 if required.	
9	method with regrouping (including numbers with			4 3
Year	more than 4 digits).			-1735
\mathbf{F}				5,001

6.4 Column method for <u>decimals up to 2</u> <u>decimal places with</u> <u>place value counters</u>		e Year 5 if required. .ys to ask children t	See Year 5 if required.
Visual representations:	Word problems:	Different forms of equations:	Concrete representations:
Part-part-whole diagrams and bar models.	Raj spent £391, Timmy spent £186. How much more did Raj spend? Calculate the difference between 391 and 186.	391 -186 What is 186 less than 391? Missing digit calculations 3 9 0 - 0 5 = 391 - 186	The difference between II and I4 is 3.

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups, factors, multiples and exchange.

	Progression	Concrete	Pictorial	Abstract
	1.8 Counting in multiples (skip count in 2's, 5's and 10's)	AAAA	0 2 4 6 8	"5, 10, 15, 20, 25"
		So the set the	0 5 10 15 20 25	
			21 22 22 34 44 55 45 77 88 29 365 31 23 23 45 55 57 37 38 29 365 41 42 23 44 45 56 77 78 19 36 51 52 53 54 55 56 17 58 19 59 65 51 52 53 54 55 56 17 58 19 56 51 52 53 54 55 56 17 78 19 36 51 52 53 74 75 74 75 75 79 39 51 52 53 54 56 57 78 19 36 51 52 53 54 56 57 78 19 36 51 52 53 54 56 57 78 19 36 51 52 55 54 55 57 78 19 36 51 52 55 54 55 57 78 19 56 51 52 55 54 55 57 58 59 56 51 52 55 54 55 55 55 55 51 55 55 55 55 51 55 55 55 55 51 55 5	
Year 1/ EYFS	<u>1.9 Doubling</u>			3 + 3 = 6
,ed	T. To Repeated datation.	Repeated addition 3 × 4 4 + 4 + 4	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12
		There are 3 equal groups, with 4 in each group.	88 88 88 	4 + 4 + 4 = 12

	<u>1.11 Arrays</u>	Putting objects into arrays. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children describe arrays in different ways. 2 groups of 5 5 groups of 2	Children to be able to use an array to write a range of calculations e.g. 5 × 2 = 10 2 × 5 = 10
ar 2	2.7 Number line to show repeated addition	Number lines to show repeated groups. E.g. 3 × 4	Represent this pictorially alongside a number line	3 × 4 = 12
Year	<u>2.8 Arrays - showing</u> <u>commutative</u> <u>multiplication</u>	Use arrays to illustrate commutativity counters and pegs can be used. $2 \times 5 = 5 \times 2$ $2 \log_{2 \log_{5} 0} 5 \log_{5} 0$	Children to represent the arrays pictorially. 2 x 5 5 x 2 00 0000 00 00000 00 00000	Children to be able to use an array to write a range of calculations e.g. 10 = 2 × 5 5 × 2 = 10 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Year 3	3.5 Multiplication by partitioning 2d x 1d using dienes	Partition to multiply using dienes of Numicon.	4×15 1×15 1×15 4×15 5×4 4×15	Children to be encouraged to show the steps they have taken. 4 × 15 10 5 4 × 5 = 20 4 × 10 = <u>40</u> <u>60</u>

	<u>3.6 Short multiplication</u> (<u>2 digit X 1 digit</u>)	Short multiplication method. Use counters or dienes. 3 X 23 105 15 000 000 000 000 000 000 000 000 000 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Children to be encouraged to show the steps they have taken. $3 \times 3 = 9$ $3 \times 20 = \frac{60}{69}$ $\frac{\times 3}{69}$
	3.7 Short multiplication with regrouping (2 digit <u>X 1 digit)</u>	Formal column method with place value counters. 6 x 23 100s 10s 1s 100s 10s 1s 100s 10s 1s 100s 10s 1s 100s 10s 1s	6 X 23	Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ $\frac{1}{1}$
	4.3 Short multiplication- place value counters. (2 and 3 digit X 1 digit)	225 X 3 = 675	$225 \times 3 = 675$ $100s \qquad 10s \qquad 00000$ $99 \qquad 90 \qquad 000 \ 000000$	$225 \times 3 = 675$ $\frac{1}{225}$ $\times \frac{3}{675}$
Year 4	4.4 Grid method to expanded method. (for 2- digit X 2-digit)	Use abstract methods.	Use abstract methods.	First introduce children to the grid method.56 x 27= 1512
				$ \begin{array}{c} 56 \\ \times 27 \\ 42 \\ 120 \\ 120 \\ 1512 \\ 1 \end{array} $

Year 5	Abstract only but might need a repeat of year 4 first (up to 4 digit X 1 digit)	See Year 4 if required See year 4 if required.	$ \begin{array}{r} 2741 \\ \times & 6 \\ \underline{16446} \\ 42 \end{array} $ $ \begin{array}{r} 132 \\ \times & 56 \\ \hline 792 \\ \underline{6600} \\ 7392 \end{array} (132 \times 6) \\ \underline{6600} \\ 7392 \end{array} $
Year 6	<u>6.5 Long multiplication</u> <u>Abstract method (up to 4</u> digits by a 2 digit number)	See year 4 if required.	$ \begin{array}{r} 132 \\ \times 56 \\ \overline{792} \\ \underline{6600} \\ \overline{7392} \end{array} $ (132 × 6) (132 × 50)

Conceptual variation; different ways to ask children to solve 6×23

Visual representations:

Word problems:

23 23 23 23 23 23

?

This image shows **4 x 6**

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one

week?

Using place value counters, prove prove that 6 x 23 = 138

<u> Different forms of equation:</u>	Concre
Find the product of 6 and 23	What What
= 6 × 23	100
6 23	
× <u>23</u> <u>× 6</u>	
	L
	1

Concrete representations:

What is the calculation? What is the product?

100s	10s	1s
	000000	

	Division Key language: share, group, groups of, lots of, regroup, divide, divided by, remainder Jubilee			
	divisor, dividend.ProgressionConcretePictorialAbstract			
EYFS / Year 1	1.12 Division by sharing objects into groups. 1.13 Division by making groups.	Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially. Fictures of objects Each pot needs three pencils in. How many pots do we need?	6 ÷ 2 = 3 3 3 12 ÷ 3 = 4
Year 2	2.9 Division by making groups. 2.10 Division within arrays- linking to multiplication. (Sharing and grouping)	 18 in groups of 6. 15 shared between 3. 15 in groups of 5. 	18:=6 = 3 	There are 3 groups of 6 in 18. 18 ÷ 6 = 3 15 ÷ 5 = 3 15 ÷ 3 = 5

	2.11 Division as counting	How many groups of 2 in 6?	Children to represent division by counting up		
	<u>up</u>	Use number line or Cuisenaire rods			
		on a ruler. 6 ÷ 2	+2 +2 +2	$6 \div 2 = 3$	
		$\frac{1}{2}$			
	3.8 To divide a two digit		Children to represent the lollipop sticks	13 ÷ 4 = 3 remainder 1	
			pictorially.		
		13 ÷ 4		Children should be encouraged to use their times	
	<u>without remainders.</u>	Line of Jullin on sticks to form wholes		table facts; they could also represent repeated	
		Use of lollipop sticks to form wholes- squares are made because we are		addition on a number line.	
		dividing by 4.		'2 groups of (with 1 left over'	
				'3 groups of 4, with 1 left over'	
		There are 3 whole squares, with 1		13 ÷ 4 = 3 r 1	
		remainder.	There are 3 whole squares, with 1 left over.	$\begin{array}{cccc} 4 & 4 & 4 & 1 \\ \end{array}$	
\mathbf{c}		Use of numicon. How many groups		0 4 8 12 13	
		of 3 in 20?			
Year		20 ÷ 3			
	3.9 Short Division	Short division using place value	Children to represent the place value		
		counters and dienes to <u>group</u> .	counters/dienes pictorially.		
	<u>number by a one digit</u>		42 . 2 . 14	1/1	
	number with regrouping of tens and ones	42 ÷ 3 = 14	$42 \div 3 = 14$		
	(no remainders)	$10'_{3}$, $1'_{3}$	10's 1 1's	311.17	
				0 - 11	
			(10)	42-3=14	
			60000		

Year 4	<u>4.5 Short division</u> <u>To divide a 3 digit</u> <u>number by a 1 digit</u> <u>number with regrouping</u> <u>in hundreds, tens and</u> <u>ones</u>	Short division using place value counters to group. 615 ÷ 5	Represent the place value counters pictorially.	Children progress to the calculation using the short division scaffold.
S	5.7 Short division Dividing a 4 digit number by a 1 digit number including remainders	See Year 4 if required.	See Year 4 if required.	0658. Remainder 2 4)2°6°3°4
Year	5.8 Short division Division problems with decimal numbers (up to 2 d.p)	0.8 ÷ 5	0.8 ÷ 5	$\frac{0.16}{50.8^{3}}$
Year 6	<u>6.6 Short division</u>	See Year 4 if required.	See Year 4 if required.	$\begin{array}{c} 0 \ 6 \ 5 \ 8 \ . \\ 4 \ \end{array} \right) \ 2 \ {}^{2} 6 \ {}^{3} 3 \ 4 \end{array}$

<u>6.7 Long division/</u> <u>chunking method (up to</u> <u>4 digit by a 2 digit</u> <u>number)</u>		203 14 2842 2800 - (200 × 14) 0042 0042 - (3 × 14) 0000	$\frac{\text{Help Box}}{1 \times 14} = 14$ $2 \times 14 = 28$ $3 \times 14 = 42$ $4 \times 14 = 56$ $5 \times 14 = 70$ $6 \times 14 = 84$ $7 \times 14 = 98$ $8 \times 14 = 112$ $9 \times 14 = 126$ $10 \times 14 = 140$

Conceptual variation; different ways to ask children to solve $615 \div 5$

Visual representations:	Word problems:	Different forms of equation:	Concrete representations:
Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank accounts. How much will be in each account?	5 615	What is the calculation? What is the answer?
615 500 100 15	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 =	100s 10s 1s 00000 00000 00000 00000