CALCULATION POLICY

Calculation policy: Guidance

See White Rose planning documents for WAGBA's and a more detailed breakdown of calculation progression.

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as' and exchanging.

	Progression	Concrete	Pictorial	Abstract
	1.1 Combiningtwo parts to makea whole.		$4+3=7$ Four is a part, 3 is a part and the whole is seven.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
힟	1.2 Starting at the bigger number and counting on	Counting on using number lines, cubes or Numicon.	Abarmodelwhichencourages the childrento count on, rather than countall.	The abstract numberline: $4+2=6$
$\frac{\bar{u}}{\pi}$	1.3 Addition bridging 10. Using ten frames or Numicon.		Children to draw the ten frame and counters/cubes.	$\begin{aligned} & \text { Children to develop an understanding of equality } \\ & \text { e.g. } \\ & 8+\square=15 \\ & 8+7=7+\square \\ & 8+7=\square+4 \end{aligned}$

$\begin{aligned} & \text { N } \\ & \frac{2}{8} \\ & 0 \end{aligned}$	2.1 Adding three single digits.	Using Numicon or ten frames.	Using pictures of ten frames or number line. $7+3+4$	Use number bonds to make ten. $6+7+4=6+4+7=17$
	2.2 Use dienes to add two numbers. (2 digit +1 digit and 2 digit +2 digit)	Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the dienes e.g. lines for tens and dot/crosses for ones.	$41+8$ Add the ones: $1+8=9$ Add the tens: $40+9=49$
	2.3 Addition with exchanging using dienes (2 digit +1 digit and 2 digit +2 digit)	$36+25$ (exchanging the ones)	$36+25$	Introduce formal column method: $\begin{array}{r} 36 \\ +25 \\ \hline 61 \end{array}$
$\frac{3}{6}$	3.1 Column method- exchanging (up to 3 digits). Using dienes.		$153+371=524$	Introduce formal column method: $\begin{array}{r} 153 \\ +371 \\ \hline 524 \\ \hline 1 \end{array}$
\geqslant	3.2 Column method exchanging (up to 3 digits). Using place value counters.		$243+368=611$	$\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$

Conceptual variation; different ways to ask children to solve 21 + 34

Word problems:	$\underline{\text { Different forms of equations: }}$
In year 3, there are 21 children and in year 4, there are 34 children. How many children intotal?	21
Calculate the sum of twenty-one and thirty-four.	$21+34=$
	$\square=21+34$
	$21+34=55$. Prove it

Concrete representations:

Missing digit problems:

Subtraction

Key language: take away, less than, difference, subtract, minus, fewer, decrease and exchanging.

	Progression	Concrete	Pictorial	Abstract
$$	1.4 Taking away ones from a whole.	Physically taking away objects from a whole. $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. め®O	$4-3=$$\square$$=4-3$4 3 $?$
	1.5 Counting back using a number line.	Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$	$6-2=4$	$6-2=4$
	1.6 Find the difference by counting on.	Finding the difference (using cubes, Numicon or Cuisenaire rods). Find the difference between 8 and 5 .	Children to draw the concrete resources they have used or used a bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $5+3=8$

	1.7 Make 10 using the ten frame	Making 10 using a ten frame. 14-5	Children to present the ten frame pictorially and discuss what they did to make ten.	Children to show how they can make ten by partitioning the smaller number. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
	2.4 Counting back using a number line.	15-7		$15-7=8$
$\begin{gathered} C \\ 0 \\ 0 \end{gathered}$	2.5 Use dienes to subtract numbers up to 2 digits (without exchanging).	Column method using dienes. 48-7	Children to represent dienes pictorially.	$48-7=41$
	2.6 Subtraction with exchanging using dienes (2 digit - 1 digit and 2 digit - 2 digit)	Column method using dienes. 41-26	$41-26$$10 s$ $1 s$ $1++\mathbb{1}$ $:$ 1 $:: 5 \%$ $: \%$	Introduce formal column method: $\begin{array}{r} 3 \\ 41 \\ -26 \\ \hline 15 \end{array}$
$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	3.3 Column method with exchanging. Using place value counters and dienes up to 3 digits.	Column method using place value counters. 234-88	234-88	Formal column method. $\begin{array}{r} 234 \\ -\quad 88 \\ \hline 6 \\ \hline \end{array}$

	3.4 Finding the difference	Begin to find the difference by counting on or back.	$74-47=27$	$74-47=27$
$\begin{aligned} & 4 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	4.2 Column method with regrouping (including regrouping thousands, hundreds, tens and ones). Up to 4 digits using place value counters.	$5342-1735$	$5342-1735$	$\begin{array}{r} 5342-1735 \\ 413 / 12 \\ 513 \not 12 \\ -1735 \\ \hline 3,607 \\ \hline \end{array}$
$1 \bigcirc$	5.3 Abstract column method with regrouping (including numbers with more than 4 digits).	See Year 4 if required.	See Year 4 if required.	$\begin{aligned} & 5342-1735 \\ & 433 / 12 \\ & 513 / 123 \\ & -1735 \\ & \hline 3,607 \\ & \hline \end{aligned}$
$1 \begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	5.4 Column method for decimals up to 2 decimal places with place value counters.	$3.24-1.16$	3.24-1.16	$\begin{array}{r} f 3 \cdot 18^{1} 4 \\ -£ 1 \cdot 16 \\ \hline \pm 2 \cdot 08 \\ \hline \end{array}$
$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 2 \end{aligned}$	6.3 Abstract column method with regrouping (including numbers with more than 4 digits).	See Year 4 if required.	See Year 4 if required.	$\begin{array}{r} 4,3 / 12 \\ 513 \not 12 \\ -1735 \\ \hline 3,607 \\ \hline \end{array}$

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups, factors, multiples and exchange.

	Progression	Concrete	Pictorial	Abstract
41120010	1.8 Counting in multiples (skip count in 2's, 5's and 10 's)	(3) \qquad 4) (4) ${ }^{\square}$		"5, 10, 15, 20, 25..."
	1.9 Doubling			$3+3=6$
	1.10 Repeated addition.	Repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$

	1.11 Arrays	Putting objects into arrays. $2 \times 5=5 \times 2$	Children describe arrays in different ways. 2 groups of 5 5 groups of 2 00000	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 5 \times 2=10 \\ & 2 \times 5=10 \end{aligned}$
N	2.7 Number line to show repeated addition	Number lines to show repeated groups. E.g. 3×4 \square Cuisenaire rods and Numicon can be used too.	Represent this pictorially alongside a number line $1_{0}^{0000_{4}^{10000_{8}^{10000}} 12}$	$\begin{aligned} & 4+4+4=12 \\ & 3 \times 4=12 \end{aligned}$
$\begin{array}{r} 0 \\ \hline \end{array}$	2.8 Arrays - showing commutative multiplication	Use arrays to illustrate commutativity counters and pegs can be used.	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
$\begin{gathered} 0 \\ 8 \\ 0 \\ \hline \end{gathered}$	3.5 Multiplication by partitioning $\underline{2 d} \times 1 d$ using dienes	Partition to multiply using dienes of Numicon.	4×15 A number line should also be used	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \quad 5 \\ 4 \times 5=20 \\ 4 \times 10=\underline{40} \\ 60 \end{array}$

3.6 Short multiplication (2 digit X 1 digit)	Short multiplication method. Use counters or dienes. 3×23	$3 \times 23$$10 s$ $1 s$ 00 000 00 000 00 000 6 9	Children to be encouraged to show the steps they have taken. $\begin{aligned} & 3 \times 3=9 \\ & 3 \times 20=\underline{60} \underline{69} \\ & \\ & \hline \quad 33 \\ & \hline 69 \\ & \hline \end{aligned}$
3.7 Short multiplication with regrouping (2 digit X 1 digit)	Formal column method with place value counters. 6×23	6×23	Formal written method $\begin{array}{r} 6 \times 23= \\ 23 \\ \times \quad 6 \\ \hline 138 \\ \hline 11 \end{array}$
4.3 Short multiplicationplace value counters. (2 and 3 digit $X 1$ digit)	$225 \times 3=675$	$225 \times 3=675$	$\begin{gathered} 225 \times 3=675 \\ h+0 \\ 225 \\ \times \quad 3 \\ \hline 675 \\ \hline \end{gathered}$
4.4 Grid method to expanded method. (for 2-digit X 2-digit)	Use abstract methods.	Use abstract methods.	First introduce children to the grid method. $56 \times 27=1512$ Then progress to the expanded method. $\begin{array}{r} 56 \\ \times \quad 27 \\ \hline 42(7 \times 6) \\ 350(750) \\ 120(20 \times 6) \\ 1000(20 \times 50) \\ \hline 1512 \end{array}$

$\begin{aligned} & 10 \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	5.5 Short multiplication Abstract only but might need a repeat of year 4 first (up to 4 digit X 1 digit)					ear 4 if required	See Yea	if required		$\begin{array}{r} 2741 \\ \times \quad 6 \\ \hline 16446 \\ \hline 42 \end{array}$		
	5.6 Long multiplication Abstract only but might need a repeat of year 4 first (up to 4 digit $X 2$ digits)					ear 4 if required.	See year	if required.		$\begin{array}{r} 132 \\ \times \quad 56 \\ \hline 792 \\ \hline 6600 \\ \hline 7392 \end{array} \quad \begin{aligned} & 132 \times \\ & \hline 7132 \times \end{aligned}$		
$\begin{aligned} & 0 \\ & \vdots \\ & \hline \\ & \hline \end{aligned}$	6.5 Long multiplication Abstract method (up to 4 digits by a 2 digit number)					See year 4 if required.	See year 4 if required.					
Conceptual variation; different ways to ask children to solve 6×23												
Visual representations:						Word problems: Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?		Different forms of equation: Find the product of 6 and 23		What is the calculation? What is the product?		
This image shows 4×6 찿 t t t \hat{x} t \hat{x} t t $t \rightarrow t \rightarrow \star$ Change the image to show 4×7						Using place value counters, prove prove that $6 \times 23=138$		$\begin{array}{r} 6 \\ \times \quad 23 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ \times \quad 6 \\ \hline \end{array}$	100s	$\begin{aligned} & \text { 10s } \\ & \hline 88 \\ & 88 \\ & 88 \\ & 88 \\ & \hline 8 \end{aligned}$	1s 008 008 0.8 080 008

	2.11 Division as counting up	How many groups of 2 in 6? Use number line or Cuisenaire rods on a ruler. $6 \div 2$ 3 groups of 2	Children to represent division by counting up	$6 \div 2=3$
$\begin{gathered} \text { M } \\ 0 \\ 0 \\ 0 \end{gathered}$	3.8 To divide a two digit number by a one digit number with and without remainders.	Cuisenaire rods, above a ruler can also be used. $13 \div 4$ Use of lollipop sticks to form wholessquares are made because we are dividing by 4. \square There are 3 whole squares, with 1 remainder. Use of numicon. How many groups of 3 in 20? $20 \div 3$	Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over.	$13 \div 4=3 \text { remainder } 1$ Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4 , with 1 left over' $13 \div 4=3 r 1$
	3.9 Short Division To divide a two digit number by a one digit number with regrouping of tens and ones (no remainders)	Short division using place value counters and dienes to group. $42 \div 3=14$	Children to represent the place value counters/dienes pictorially. $42 \div 3=14$	$\begin{gathered} 14 \\ 3 \sqrt[4^{\prime 2}]{2} \\ 42 \div 3=14 \end{gathered}$

$$	4.5 Short division To divide a 3 digit number by a 1 digit number with regrouping in hundreds, tens and ones	Short division using place value counters to group. $615 \div 5$ How many groups of 5 hundreds can you make with 6 hundred counters?			Represent the place value counters pictorially.	Children progress to the calculation using the short division scaffold.${ }_{5}^{\frac{123}{61^{\prime} 5}}$
	5.7 Short division Dividing a 4 digit number by a 1 digit number including remainders	See Ye	r 4 if re	quired.	See Year 4 if required.	$4 \frac{0658}{4^{2} 6^{2} 3^{3} 4}$
$\begin{aligned} & i \\ & 0 \\ & \hline \end{aligned}$	5.8 Short division Division problems with decimal numbers (up to 2 d.p)	$0.8 \div 5$ ones			$0.8 \div 5$ ones 1 teenths $\frac{1}{10}$ humadreths $\frac{1}{100}$	$\frac{0.16}{500.8^{3} 0}$
$\begin{aligned} & 0 \\ & \vdots \\ & \% \\ & \hline \end{aligned}$	6.6 Short division	See Year	4 if requir	red.	See Year 4 if required.	$4 \frac{0658}{2^{2} 6^{2} 3^{3} 4}$

Visual representations:
Using the part whole model below, how can you divide 615 by 5 without using short division?

Word problems:
I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

Different forms of equation:
$5 \longdiv { 6 1 5 }$
$615 \div 5=$
$\square=615 \div 5$

Concrete representations:
What is the calculation? What is the answer?

